Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Eur J Immunol ; 2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-20241530

ABSTRACT

Replication-incompetent adenovirus (Ad) vector and mRNA-lipid nanoparticle (LNP) constructs represent two modular vaccine platforms that have attracted substantial interest over the past two decades. Due to the COVID-19 pandemic and the rapid development of multiple successful vaccines based on these technologies, there is now clear real-world evidence of the utility and efficacy of these platforms. Considerable optimization and refinement efforts underpin the successful application of these technologies. Despite this, our understanding of the specific pathways and processes engaged by these vaccines to stimulate the immune response remains incomplete. This review will synthesize our current knowledge of the specific mechanisms by which CD8+ T cell and antibody responses are induced by each of these vaccine platforms, and how this can be impacted by specific vaccine construction techniques. Key gaps in our knowledge are also highlighted, which can hopefully focus future studies.

2.
mBio ; 14(1): e0305422, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2268953

ABSTRACT

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a member of the family Coronaviridae, genus Betacoronavirus, and subgenus Embecovirus that causes neurological disorders, vomiting and wasting disease (VWD), or influenza-like illness (ILI) in pigs. Exosomes regulate nearby or distant cells as a means of intercellular communication; however, whether they are involved in the transmission of viral reference materials during PHEV infection is unknown. Here, we collected exosomes derived from PHEV-infected neural cells (PHEV-exos) and validated their morphological, structural, and content characteristics. High-resolution mass spectrometry indicated that PHEV-exos carry a variety of cargoes, including host innate immunity sensors and viral ingredients. Furthermore, transwell analysis revealed that viral ingredients, such as proteins and RNA fragments, could be encapsulated in the exosomes of multivesicular bodies (MVBs) to nonpermissive microglia. Inhibition of exosome secretion could suppress PHEV infection. Therefore, we concluded that the mode of infectious transmission of PHEV is likely through a mixture of virus-modified exosomes and virions and that exosomal export acts as a host strategy to induce an innate response in replicating nonpermissive bystander cells free of immune system recognition. IMPORTANCE The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a large number of deaths worldwide. Clinical neurological complications have occurred in some cases; however, knowledge of the natural history of coronavirus in the central nervous system (CNS) is thus far limited. PHEV is a typical neurotropic betacoronavirus (ß-CoV) that propagates via neural circuits in the host CNS after peripheral incubation rather than through the bloodstream. It is therefore a good prototype pathogen to investigate the neuropathological pathogenesis of acute human coronavirus infection. In this study, we demonstrate a new association between host vesicle-based secretion and PHEV infection, showing that multivesicular-derived exosomes are one of the modes of infectious transmission and that they mediate the transfer of immunostimulatory cargo to uninfected neuroimmune cells. These findings provide novel insights into the treatment and monitoring of neurological consequences associated with ß-CoV, similar to those associated with SARS-CoV-2.


Subject(s)
Betacoronavirus 1 , COVID-19 , Exosomes , Swine , Animals , Humans , Betacoronavirus 1/genetics , Betacoronavirus 1/metabolism , SARS-CoV-2
3.
Proc Natl Acad Sci U S A ; 119(43): e2211467119, 2022 10 25.
Article in English | MEDLINE | ID: covidwho-2077262

ABSTRACT

Through a screen that combines functional and evolutionary analyses, we identified tripartite motif protein (Trim69), a poorly studied member of the Trim family, as a negative regulator of HIV-1 infection in interferon (IFN)-stimulated myeloid cells. Trim69 inhibits the early phases of infection of HIV-1, but also of HIV-2 and SIVMAC in addition to the negative and positive-strand RNA viruses vesicular stomatitis virus and severe acute respiratory syndrome coronavirus 2, with magnitudes that depend on the combination between cell type and virus. Mechanistically, Trim69 associates directly to microtubules and its antiviral activity is linked to its ability to promote the accumulation of stable microtubules, a program that we uncover to be an integral part of antiviral IFN-I responses in myeloid cells. Overall, our study identifies Trim69 as the antiviral innate defense factor that regulates the properties of microtubules to limit viral spread and highlights the cytoskeleton as an unappreciated battleground in the host-pathogen interactions that underlie viral infections.


Subject(s)
HIV Infections , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Virus Replication , Humans , Immunity, Innate , Interferons/immunology , Microtubules/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , HIV Infections/immunology
4.
Front Immunol ; 13: 841868, 2022.
Article in English | MEDLINE | ID: covidwho-1785344

ABSTRACT

The Bacillus Calmette-Guérin (BCG) vaccine, which is widely used to protect children against tuberculosis, can also improve immune response against viral infections. This unicentric, randomized-controlled clinical trial assessed the efficacy and safety of revaccination with BCG Moscow in reducing the positivity and symptoms of COVID-19 in health care workers (HCWs) during the COVID-19 pandemic. HCWs who had negative COVID-19 IgM and IgG and who dedicated at least eight hours per week in facilities that attended to individuals suspected of having COVID-19 were included in the study and were followed for 7, 15, 30, 60, and 180 days by telemedicine. The HCWs were randomly allocated to a revaccinated with BCG group, which received the BCG vaccine, or an unvaccinated group. Revaccination with BCG Moscow was found to be safe, and its efficacy ranged from 30.0% (95.0%CI -78.0 to 72.0%) to 31.0% (95.0%CI -74.0 to 74.0%). Mycobacterium bovis BCG Moscow did not induce NK cell activation at 15-20 days post-revaccination. As hypothesized, revaccination with BCG Moscow was associated with a lower incidence of COVID-19 positivity, though the results did not reach statistical significance. Further studies should be carried out to assess whether revaccination with BCG is able to protect HCWs against COVID-19. The protocol of this clinical trial was registered on August 5th, 2020, at REBEC (Registro Brasileiro de Ensaios Clínicos, RBR-4kjqtg - ensaiosclinicos.gov.br/rg/RBR-4kjqtg/1) and the WHO (# U1111-1256-3892). The clinical trial protocol was approved by the Comissão Nacional de ética de pesquisa- CONEP (CAAE 31783720.0.0000.5078).


Subject(s)
COVID-19 , Mycobacterium bovis , BCG Vaccine , COVID-19/prevention & control , Child , Health Personnel , Humans , Immunization, Secondary/methods , Moscow , Pandemics/prevention & control
5.
Nutrients ; 14(3)2022 Jan 30.
Article in English | MEDLINE | ID: covidwho-1667257

ABSTRACT

Obesity is characterized by low-grade inflammation and more susceptibility to infection, particularly viral infections, as clearly demonstrated in COVID-19. In this context, immunometabolism and metabolic flexibility of macrophages play an important role. Since inflammation is an inherent part of the innate response, strategies for decreasing the inflammatory response must avoid immunocompromise the innate defenses against pathogen challenges. The concept "bioregulation of inflammatory/innate responses" was coined in the context of the effects of exercise on these responses, implying a reduction in excessive inflammatory response, together with the preservation or stimulation of the innate response, with good transitions between pro- and anti-inflammatory macrophages adapted to each individual's inflammatory set-point in inflammatory diseases, particularly in obesity. The question now is whether these responses can be obtained in the context of weight loss by dietary interventions (low-fat diet or abandonment of the high-fat diet) in the absence of exercise, which can be especially relevant for obese individuals with difficulties exercising such as those suffering from persistent COVID-19. Results from recent studies are controversial and do not point to a clear anti-inflammatory effect of these dietary interventions, particularly in the adipose tissue. Further research focusing on the innate response is also necessary.


Subject(s)
COVID-19 , Humans , Inflammation/metabolism , Macrophages/metabolism , Obesity/metabolism , SARS-CoV-2 , Weight Loss
SELECTION OF CITATIONS
SEARCH DETAIL